Physical and technological causes of channel inhomogeneity in InSb single crystals heavily doped with Te
https://doi.org/10.17073/1609-3577j.met202312.571
Abstract
InSb single crystals doped with tellurium have been grown by the modernised Czochralskii method in crystallographic directions [100], [111] and [112]. The development of channel inhomogeneity due to low activation energy of Te atoms capture by planes with high reticular density {111} in the process of crystal growth has been investigated. Based on the Hall method, it was shown that the electrophysical parameters, i.e., the concentration of free charge carriers and their mobility, in and outside the channel region differ from each other by 10 and 22%, respectively. It is shown that in addition to the crystallographic direction of growth, the development of channel inhomogeneity is greatly influenced by the selection of technological conditions (rotation speed of the seed, crucible with melt, its burial, etc.), as well as the design of the thermal unit of the growth furnace. It is revealed that to obtain InSb (111) wafers, which are in demand in the microelectronics market, the optimal technological solution is the development of single crystal growth mode, which allows to ensure early exit of channel inhomogeneity to the periphery. It is shown that by adding additional screens to the thermal unit of the growth furnace, thereby lowering the axial gradient at the crystallisation front, it is possible to achieve the channel exit to the single crystal diameter 4 cm earlier than the reverse cone.
About the Authors
N. Yu. KomarovskiyRussian Federation
2-1 Elektrodnaya Str., Moscow 111524;
4-1 Leninsky Ave., Moscow 119049
Nikita Yu. Komarovskiy — Researcher
Yu. N. Parkhomenko
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Yuri N. Parkhomenko — Dr. Sci. (Phys.-Math.), Professor, Scientific Consultant, Department of Materials Science of Semiconductors and Dielectrics
E. V. Molodtsova
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Elena V. Molodtsova — Cand. Sci. (Eng.), Leading Researcher
E. O. Zhuravlev
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
4-1 Leninsky Ave., Moscow 119049
Evgeny O. Zhuravlev — Trainee Student
V. A. Chuprakov
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Victor A. Chuprakov — Engineer 1st Category
R. Yu. Kozlov
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
4-1 Leninsky Ave., Moscow 119049
Roman Yu. Kozlov — Head of the Laboratory
S. N. Knyazev
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Stanislav N. Knyazev — Cand. Sci. (Eng.), Head of the Laboratory of High-Temperature Semiconductor Compounds АIIIВV
A. G. Belov
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Aleksandr G. Belov — Cand. Sci. (Phys.–Math.), Leading Researcher
References
1. 1 Weiss E. Thirty years of HgCdTe technology in Israel. In: Proceed. сonf. SPIE Defense, Security, and Sensing. Orlando, Florida, United States. Vol. 7298. Infrared Technology and Applications XXXV; 2009: 72982W. https://doi.org/10.1117/12.818237
2. 2 Gershon G., Albo A., Eylon M., Cohen O., Calahorra Z., Brumer M., Nitzani M., Avnon E., Aghion I., Kogan I., Ilan E., Tuito A., Ben Ezra M., Shkedy L. Large format InSb infrared detector with 10 μm pixels. In: Proceed. 6th Inter. Symp. on optronics in defence and security. Optro. Paris, France. January 28, 2014; 2014: 2931891.
3. 3 Alfimova D.L., Lunina M.L., Lunin L.S., Pashchenko O.S., Pashchenko A.S., Yatsenko A.N. Bismuth effect on structural perfection of AlGaInSbBi elastic-strained epitaxial layers grown on InSb substrates. Poverhnost'. rentgenovskie, sinhrotronnye i nejtronnye issledovaniya. 2020; (8): 20—25. (In Russ.). https://doi.org/10.31857/S1028096020080038
4. 4 Ezhlov V.S., Milvidskaya A.G., Molodtsova E.V., Kolchina G.P., Mezhennyi M.V., Resnick V.Ya. Investigation on the properties of large [100]-oriented InSb single crystals grown by Czohralski method. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2012; (2): 13—17. (In Russ.). https://doi.org/10.17073/1609-3577-2012-2-13-17
5. 5 Kormilitsina S.S., Molodtsova E.V., Komarovsky N.Yu., Kozlov R.Yu., Zhuravlev E.O. Growth features of indium antimonide single crystals in crystallographic directions [100], [211], [111]. In: Coll. thesis of the 2nd Int. scient.-pract. conf., dedicated to the memory of Academician N.P. Sazhin “Rare metals and materials based on them: technologies, properties and applications” (“REDMET-2022”). Moscow, November 23–25, 2022. Moscow: Nauchnye tekhnologii; 2022. P. 166—168. (In Russ.)
6. 6 Nashel'skii A.Ya. Technology of semiconductor materials. Moscow: Metallurgiya; 1987. 334 p. (In Russ.)
7. 7 Komarovsky N.Yu., Molodtsova E.V., Belov A.G., Grishechkin M.B., Kozlov R.Yu., Kormilitsina S.S., Zhuravlev E.O., Nestyurkin M.S. Study of indium antimonide single crystals obtained by the modernized Chokhralsky method in several crystallographic directions. Industrial Laboratory. Diagnostics of Materials. 2023; 89(8): 38—46. (In Russ.). https://doi.org/10.26896/1028-6861-2023-89-8-38-46
8. 8 KomarovskyN. Yu., Molodtsova E.V., Trofimov A.A., Kormilitsina S.S., Ul'karov V.A., Nestyurkin M.S., Zarechenskaya A.A., Tsaregradtsev D.O. Study of dependence of strength characteristics of single-crystal InSb on crystallographic orientation and growth conditions. Prikladnaya fizika = Applied Physics. 2023; (3): 63—72. (In Russ.). https://doi.org/10.51368/1996-0948-2023-3-63-72
9. 9 Dong J.T., Inbar H.S., Pendharkar M., Schijndel A.J., Young E.C., Dempsey C.P., Palmstrom C.J. Electronic structure of InSb (001),(110), and (111) B surfaces. Journal of Vacuum Science & Technology B. 2023; 41(3): 032808. https://doi.org/10.1116/6.0002606
10. 10 Merrell J.L., Gray N.W., Bolke J.G., Merrell A.N., Prax A.G., Demke J., Gossett N. Enabling on-axis InSb crystal growth for high-volume wafer production: characterizing and eliminating variation in electrical performance for IR focal plane array applications. In: Proceed. SPIE. Vol. 9819. Infrared technology and applications XLII; 2016: 981915. https://doi.org/10.1117/12.2223956
11. 11 Gray N.W., Perez-Rubio V., Bolke J.G., Alexander W.B. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates. In: Proceed. SPIE. Vol. 9220. Infrared sensors, devices, and applications IV; 2014: 922003. https://doi.org/10.1117/12.2061973
12. 12 Volkov D.A., Fistul V.I. Topological assessment of the probability of formation of intrinsic point defects in III-V crystals with a sphalerite structure. Fizika i tekhnika poluprovodnikov. 1990; 24(3): 475—478. (In Russ.).
13. 13 Zharikova E.V., Molodtsova E.V., Kozlov R.Yu., Zavrazhin D.A., Titorov V.V., Kormilitsina S.S., Knyazev S.N. Investigation of the influence of growing conditions on the structure of large-sized single crystals of indium antimonide obtained by the Czochralskii method. In: Collection. proceed. of the 5th Interdisciplinary. scient. forum with inter.participation "New materials and advanced technologies". Moscow, October 30 – November 1, 2019. Vol. II. Moscow: Intellektual'nye sistemy; 2019. P. 440—443. (In Russ.)
Review
For citations:
Komarovskiy N.Yu., Parkhomenko Yu.N., Molodtsova E.V., Zhuravlev E.O., Chuprakov V.A., Kozlov R.Yu., Knyazev S.N., Belov A.G. Physical and technological causes of channel inhomogeneity in InSb single crystals heavily doped with Te. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(1):85-95. (In Russ.) https://doi.org/10.17073/1609-3577j.met202312.571