Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Modeling the characteristics of gamma detectors based on silicon p–i–n structures

https://doi.org/10.17073/1609-3577j.met202405.591

Abstract

A program has been developed for modeling the currents of a detector based on a pin structure exposed to gamma radiation in the low-energy range from 1 to 30 keV. The program allows one to take into account the contribution of different regions of the structure (p+, n+, and the space charge region) to the detector current, which makes it possible to analyze changes in the spectral dependences of the detector current. The basic pixel size was 10×10 μm2. Two types of structures were used for modeling: with an n+ region between two p+ regions on the structure surface and without this dividing region. In order to optimize the design and improve the efficiency of collecting X-ray quanta, the dependences of the spectral characteristics of the structure current on geometrical, technological parameters, and the applied voltage were considered. It was shown that the thickness of the lightly doped region and the reverse voltage applied to the structure have the greatest influence on the type of spectral characteristics of the current. Comparisons of detector characteristics for structures of two different designs are carried out.

About the Authors

S. A. Legotin
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Sergey A. Legotin — Cand. Sci. (Eng.), Associate Professor



S. Yu. Yurchuk
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Sergey Yu. Yurchuk — Cand. Sci. (Phys.-Math.), Associate Professor



V. N. Murashev
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Viktor N. Murashev — Dr. Sci. (Eng.), Professor



M. P. Konovalov
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Mikhail P. Konovalov — Cand. Sci. (Eng.), Associate Professor



K. I. Tapero
Research and Development Institute of Scientific Instruments, JSC
Russian Federation

8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080

Konstantin I. Tapero — Dr. Sci. (Eng.), Senior Researcher, Deputy Director General for Science and Innovation



A. V. Sidelev
Research and Development Institute of Scientific Instruments, JSC
Russian Federation

8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080

Aleksey V. Sidelev — Head of the Research and Innovation Development Department, Research and Development Institute of Scientific Instruments



E. P. Sideleva
Research and Development Institute of Scientific Instruments, JSC
Russian Federation

8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080

Ekaterina P. Matyukhina (Sideleva) — Junior Researcher



N. S. Khrushchev
Research and Development Institute of Scientific Instruments, JSC
Russian Federation

8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080

Nikita S. Khrushchev — Researcher



References

1. Golodnykh E.V. Review of gamma-ray detectors for horizontal wellbore position monitoring. Vestnik nauki Sibiri. Seriya: Inzherenye nauki. 2013;(1(7)):129—138. (In Russ.). URL: https://jwt.su/journal/article/view/419?ysclid=m90ew506xh892151363

2. Sidorenko V.V., Kuznetsov Yu.A., Ovodenko A.A. Detectors of ionizing radiation. Leningrad: Sudostroenie; 1984. 240 p. (In Russ.)

3. Volkov D.L., Murashev V.N., Legotin S.A., Karmanov D.E., Mukhamedshin R.A., Chubenko A.P. A new position-sensitive silicon pixel detector based on bipolar transistor. Instruments and Experimental Techniques. 2009; 52(5): 655—664. https://doi.org/10.1134/S0020441209050042

4. Murashev V.N., Legotin S.A., Orlov O.M., Korol'Chenko A.S., Ivshin P.A. A silicon position-sensitive detector of changed particles and radiation on the basis of functionally integrated structures with nano-micron active regions. Instruments and Experimental Techniques. 2010; 53(5): 657—662. https://doi.org/10.1134/S0020441210050076

5. Zi S. Fizika poluprovodnikovykh priborov. V 2-kh kn. Moscow: Mir; 1984. Kn 2. 456 p. (Russ. transl. from: Sze S.M. Physics of semiconductor devices. In 2 books. NY, Chichester, Brisbone, Toronto, Singapore: John Willey and Sons; 1981. Book 2. 456 p.)

6. MOP SBIS. Modelirovanie elementov i tekhnologicheskikh protsessov. Moscow: Radio i svyaz'; 1988. 496 p. (Russ. transl. from: Antoniadis D.A., Dutton R.W., Oldham W.G. (eds.). Process and device simulation circuits for MOS-VLSI (NATO Science Series E). USA, Boston: Springer Science & Business Media; 1983. 619 p.)

7. De Mari A. An accurate numerical steady-state one-dimensional solution of the p-n junction. Solid-State Electronics. 1968; 11: 33—58. https://doi.org/10.1016/0038-1101(68)90137-8

8. Bubennikov A.N. Modeling of integrated microtechnologies of devices and circuits. Moscow: Vysshaya shkola; 1989. 320 p. (In Russ.)

9. Yurchuk S.Yu., Murashov V.N. Modeling of semiconductor devices. Moscow: Izdatel'skii Dom NITU “MISiS”; 2001. 99 p. (In Russ.)

10. Varlashov I.B. Physical and topological modeling of semiconductor structures. URL: http://www.old.mpei.ru/Exp/getparm_AU.asp?parmvalueid=4000070001971

11. Marchuk G.I. Methods of computational mathematics. Moscow: Nauka; 1989. 608 p. (In Russ.)

12. Samarsky A.A., Gulin A.V. Numerical methods of mathematical physics. Moscow: Nauchnyi mir; 2000. 316 p. (In Russ.)

13. Dainty J.C., Shaw R. Image science: Principles, analysis and evaluation of photographic-type imaging processes. London: NY, San-Francisco: Academic Press; 1974. 402 p.

14. Vologdin E.N., Lysenko A.P. Integral radiation changes in the parameters of semiconductor materials. Moscow: Mosk. gos. in-t elektroniki i matematiki; 1999. 94 p. (In Russ.)

15. X-Ray mass attenuation coefficients. NIST Standard Reference Database 126. URL: https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z14.html

16. New semiconductor materials. Biology systems. Characteristics and properties. URL: http://www.ioffe.ru/SVA/NSM/


Review

For citations:


Legotin S.A., Yurchuk S.Yu., Murashev V.N., Konovalov M.P., Tapero K.I., Sidelev A.V., Sideleva E.P., Khrushchev N.S. Modeling the characteristics of gamma detectors based on silicon p–i–n structures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(3):232-244. (In Russ.) https://doi.org/10.17073/1609-3577j.met202405.591

Views: 141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)