Modeling the characteristics of gamma detectors based on silicon p–i–n structures
https://doi.org/10.17073/1609-3577j.met202405.591
Abstract
A program has been developed for modeling the currents of a detector based on a p–i–n structure exposed to gamma radiation in the low-energy range from 1 to 30 keV. The program allows one to take into account the contribution of different regions of the structure (p+, n+, and the space charge region) to the detector current, which makes it possible to analyze changes in the spectral dependences of the detector current. The basic pixel size was 10×10 μm2. Two types of structures were used for modeling: with an n+ region between two p+ regions on the structure surface and without this dividing region. In order to optimize the design and improve the efficiency of collecting X-ray quanta, the dependences of the spectral characteristics of the structure current on geometrical, technological parameters, and the applied voltage were considered. It was shown that the thickness of the lightly doped region and the reverse voltage applied to the structure have the greatest influence on the type of spectral characteristics of the current. Comparisons of detector characteristics for structures of two different designs are carried out.
Keywords
About the Authors
S. A. LegotinRussian Federation
4-1 Leninsky Ave., Moscow 119049
Sergey A. Legotin — Cand. Sci. (Eng.), Associate Professor
S. Yu. Yurchuk
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Sergey Yu. Yurchuk — Cand. Sci. (Phys.-Math.), Associate Professor
V. N. Murashev
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Viktor N. Murashev — Dr. Sci. (Eng.), Professor
M. P. Konovalov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Mikhail P. Konovalov — Cand. Sci. (Eng.), Associate Professor
K. I. Tapero
Russian Federation
8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080
Konstantin I. Tapero — Dr. Sci. (Eng.), Senior Researcher, Deputy Director General for Science and Innovation
A. V. Sidelev
Russian Federation
8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080
Aleksey V. Sidelev — Head of the Research and Innovation Development Department, Research and Development Institute of Scientific Instruments
E. P. Sideleva
Russian Federation
8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080
Ekaterina P. Matyukhina (Sideleva) — Junior Researcher
N. S. Khrushchev
Russian Federation
8 Turaevo Industrial Area, Lytkarino, Moscow Region 140080
Nikita S. Khrushchev — Researcher
References
1. Golodnykh E.V. Review of gamma-ray detectors for horizontal wellbore position monitoring. Vestnik nauki Sibiri. Seriya: Inzherenye nauki. 2013;(1(7)):129—138. (In Russ.). URL: https://jwt.su/journal/article/view/419?ysclid=m90ew506xh892151363
2. Sidorenko V.V., Kuznetsov Yu.A., Ovodenko A.A. Detectors of ionizing radiation. Leningrad: Sudostroenie; 1984. 240 p. (In Russ.)
3. Volkov D.L., Murashev V.N., Legotin S.A., Karmanov D.E., Mukhamedshin R.A., Chubenko A.P. A new position-sensitive silicon pixel detector based on bipolar transistor. Instruments and Experimental Techniques. 2009; 52(5): 655—664. https://doi.org/10.1134/S0020441209050042
4. Murashev V.N., Legotin S.A., Orlov O.M., Korol'Chenko A.S., Ivshin P.A. A silicon position-sensitive detector of changed particles and radiation on the basis of functionally integrated structures with nano-micron active regions. Instruments and Experimental Techniques. 2010; 53(5): 657—662. https://doi.org/10.1134/S0020441210050076
5. Zi S. Fizika poluprovodnikovykh priborov. V 2-kh kn. Moscow: Mir; 1984. Kn 2. 456 p. (Russ. transl. from: Sze S.M. Physics of semiconductor devices. In 2 books. NY, Chichester, Brisbone, Toronto, Singapore: John Willey and Sons; 1981. Book 2. 456 p.)
6. MOP SBIS. Modelirovanie elementov i tekhnologicheskikh protsessov. Moscow: Radio i svyaz'; 1988. 496 p. (Russ. transl. from: Antoniadis D.A., Dutton R.W., Oldham W.G. (eds.). Process and device simulation circuits for MOS-VLSI (NATO Science Series E). USA, Boston: Springer Science & Business Media; 1983. 619 p.)
7. De Mari A. An accurate numerical steady-state one-dimensional solution of the p-n junction. Solid-State Electronics. 1968; 11: 33—58. https://doi.org/10.1016/0038-1101(68)90137-8
8. Bubennikov A.N. Modeling of integrated microtechnologies of devices and circuits. Moscow: Vysshaya shkola; 1989. 320 p. (In Russ.)
9. Yurchuk S.Yu., Murashov V.N. Modeling of semiconductor devices. Moscow: Izdatel'skii Dom NITU “MISiS”; 2001. 99 p. (In Russ.)
10. Varlashov I.B. Physical and topological modeling of semiconductor structures. URL: http://www.old.mpei.ru/Exp/getparm_AU.asp?parmvalueid=4000070001971
11. Marchuk G.I. Methods of computational mathematics. Moscow: Nauka; 1989. 608 p. (In Russ.)
12. Samarsky A.A., Gulin A.V. Numerical methods of mathematical physics. Moscow: Nauchnyi mir; 2000. 316 p. (In Russ.)
13. Dainty J.C., Shaw R. Image science: Principles, analysis and evaluation of photographic-type imaging processes. London: NY, San-Francisco: Academic Press; 1974. 402 p.
14. Vologdin E.N., Lysenko A.P. Integral radiation changes in the parameters of semiconductor materials. Moscow: Mosk. gos. in-t elektroniki i matematiki; 1999. 94 p. (In Russ.)
15. X-Ray mass attenuation coefficients. NIST Standard Reference Database 126. URL: https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z14.html
16. New semiconductor materials. Biology systems. Characteristics and properties. URL: http://www.ioffe.ru/SVA/NSM/
Review
For citations:
Legotin S.A., Yurchuk S.Yu., Murashev V.N., Konovalov M.P., Tapero K.I., Sidelev A.V., Sideleva E.P., Khrushchev N.S. Modeling the characteristics of gamma detectors based on silicon p–i–n structures. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(3):232-244. (In Russ.) https://doi.org/10.17073/1609-3577j.met202405.591