Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Modeling the functioning of semiconductor devices taking into account defects in the atomic structure

https://doi.org/10.17073/1609-3577j.met202310.604

Abstract

The paper studies the testing of modern numerical methods for studying the electrophysical characteristics of semiconductor devices. Using the diffusion-drift model, the electrophysical characteristics of the selected transistor are calculated. An original program code was also developed for modeling ballistic electron transport in nanotransistors (topological dimensions of ~10 nm) taking into account defects in the atomic structure. Modeling the characteristics of a field-effect nanotransistor showed that a violation of the crystal structure of the transistor leads to degradation of the I–V curve.

About the Author

I. K. Gainullin
Lomonosov Moscow State University
Russian Federation

1 Leninskiye Gory, Moscow 119991

Ivan K. Gainullin — Dr. Sci. (Phys.-Math.), Associate Professor, Department of Physics



References

1. Scharfetter D.L., Gummel D.L. Large signal analysis of a silicon Read diode oscillator. IEEE Transaction on Electron Devices. 1969; 16(1): 64—77. https://doi.org/10.1109/T-ED.1969.16566

2. Stratton R. Diffusion of hot and cold electrons in semiconductor barriers. Physical Review. 1962; 126(6): 2002. https://doi.org/10.1103/PhysRev.126.2002

3. Jacoboni C., Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Reviews of Modern Physics. 1983; 55(3): 645—705. https://doi.org/10.1103/RevModPhys.55.645

4. Jacoboni C., Lugli P. The Monte Carlo method for semiconductor device simulation. Springer Science & Business Media; 2012.

5. Hess K. Monte Carlo device simulation: full band and beyond. Boston: Kluwer Academic Publishing; 1991.

6. Vasileska D., Mamaluy D., Khan H.R., Raleva K., Goodnick S.M. Semiconductor device modeling. Journal of Computational and Theoretical Nanoscience. 2008; 5(6): 999—1030. https://doi.org/10.1166/jctn.2008.2538

7. Landauer R. Electrical transport in open and closed systems. Zeitschrift für Physik B Condensed Matter. 1987; 68(2): 217—228. https://doi.org/10.1007/BF01304229

8. Buttiker M. Coherent and sequential tunneling in series barriers. IBM Journal of Research and Development. 1988; 32(1): 63—75. https://doi.org/10.1147/rd.321.0063

9. Gummel H.K. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Transactions on electron devices. 1964; 11(10): 455—465. https://doi.org/10.1109/t-ed.1964.15364

10. Apostol T.M. Calculus. V. II: Multi-variable calculus and linear algebra, with applications to differential equations and probability. John Wiley & Sons; 1969. 673 p.

11. Bortolossi A. 3D finite element drift diffusion simulation of semiconductor devices. 2014. https://hdl.handle.net/10589/94468

12. Aspé R., Esteban F. Simulation tool development for semiconductor devices based on drift-diffusion and Monte Carlo. 2015.

13. Tribbia C. 3D transient drift-diffusion simulation of semiconductor devices in presence of impact ionization. 2016.

14. Datta S. Quantum transport: atom to transistor. Cambridge University Press; 2005.

15. Datta S. Electronic transport in mesoscopic systems. Cambridge university press; 1997.


Review

For citations:


Gainullin I.K. Modeling the functioning of semiconductor devices taking into account defects in the atomic structure. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):140-145. (In Russ.) https://doi.org/10.17073/1609-3577j.met202310.604

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)