Formation of an antireflective structure on the surface of single-crystal silicon by accelerated Xe ions
https://doi.org/10.17073/1609-3577j.met202408.608
Abstract
The paper studies the effect of ion-beam etching on the reflectivity characteristics of single-crystal silicon. The surface morphology formed during ion beam treatment was investigated and it was found that at normal incidence of Xe ions on the sample surface and low ion energies, a regular pit structure is formed with an increase in the amplitude of inhomogeneities in the spatial frequency range of 0.025–0.5 μm-1, and at grazing incidence of Xe ions and high energies, a scaly topology is formed with an increase in the amplitude of inhomogeneities in the spatial frequency range of 0.025–10 μm-1. Based on the study, a technique for forming a developed regular structure on the surface of a polished single-crystal silicon wafer with the (110) orientation using ion-beam etching is proposed. The technique consists in irradiating the surface of a single-crystal silicon sample with a wide quasi-parallel beam of monoenergetic Xe ions. It is shown that the treatment of monocrystalline silicon with a beam of accelerated Xe ions at an ion incidence angle of 70° and an ion energy of 1000 eV for only 30 min. forms a developed relief on the sample surface, reducing reflection and providing absorption of radiation with wavelengths in the wavelength range of 400–1000 nm by more than 90%. The technique provides a decrease in the reflection coefficient greater than that of black silicon prepared by standard technology at wavelengths of 532 and 793 nm, as well as in a wider range of incidence angles at wavelengths of 532, 633 and 793 nm, which in the future will allow the manufacture of solar power plants without expensive rotary supports and reduce their operating costs.
About the Authors
M. V. ZorinaRussian Federation
7 Academicheskaya Str., Nizhny Novgorod 603950
Maria V. Zorina — Researcher
M. S. Mikhailenko
Russian Federation
7 Academicheskaya Str., Nizhny Novgorod 603950
Mikhail S. Mikhailenko — Junior Researcher
A. E. Pestov
Russian Federation
7 Academicheskaya Str., Nizhny Novgorod 603950
Alexey E. Pestov — Cand. Sci. (Phys.-Math.), Head of Laboratory
A. A. Perekalov
Russian Federation
7 Academicheskaya Str., Nizhny Novgorod 603950
Alexander A. Perekalov — Junior Researcher
N. I. Chkhalo
Russian Federation
7 Academicheskaya Str., Nizhny Novgorod 603950
Nikolay I. Chkhalo — Dr. Sci. (Phys.-Math.), Head of Department
References
1. Green M.A., Dunlop E.D., Siefer G., Yoshita M., Kopidakis N., Bothe K., Hao, X. Solar cell efficiency tables (version 62). Progress in Photovoltaics: Research and Applications. 2023; 31(7): 651—663. https://doi.org/10.1002/pip.3646
2. Andreani L.C., Bozzola A., Kowalczewski P., Liscidini M., Redorici L. Silicon solar cells: toward the efficiency limits. Advances in Physics: X. 2019; 4(1): 1548305. https://doi.org/10.1080/23746149.2018.1548305
3. Alarifi I.M. Advanced selection materials in solar cell efficiency and their properties — A comprehensive review. Materials Today: Proceedings. 2023; 81: 403—414. https://doi.org/10.20944/preprints202102.0345.v1
4. Maronchuk I.I., Sanikovich D.D., Davydova E.V., Tabachkova N.Yu. Cadmium telluride for high-efficiency solar cells. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023; 26(1): 17—25. (In Russ.). https://doi.org/10.17073/1609-3577-2023-1-17-25
5. Green M., Dunlop E., Hohl-Ebinger J., Yoshita M., Kopidakis N., Hao X. Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications. 2021; 29(1): 3—15. https://doi.org/10.1002/pip.3371
6. Li J., Aierken A., Liu Y., Zhuang Y., Yang X., Mo J.H., Fan R.K., Chen Q.Y., Zhang S.Y., Huang Y.M., Zhang Q. A brief review of high efficiency III-V solar cells for space application. Frontiers in Physics. 2021; 8: 631925. https://doi.org/10.3389/fphy.2020.631925
7. Chin X.Y., Turkay D., Steele J.A., Tabean S., Eswara S., Mensi M., Fiala P., Wolff Ch.M., Paracchino A., Artuk K., Jacobs D., Guesnay Q., Sahli F., Andreatta G., Boccard M., Jeangros Q., Ballif Ch. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science. 2023; 381(6653): 59—63. https://doi.org/10.1126/science.adg0091
8. Schäfer S., Brendel R. Accurate calculation of the absorptance enhances efficiency limit of crystalline silicon solar cells with lambertian light trapping. IEEE Journal of Photovoltaics. 2018; 8(4): 1156—1158. https://doi.org/10.1109/JPHOTOV.2018.2824024
9. Nebol'sin V.A., Swaikat N., Vorob'ev A.Y. Black silicon: A new manufacturing method and optical properties. Technical Physics Letters. 2018; 44(12): 1055—1058. https://doi.org/10.1134/S1063785018120313
10. Kim M.S., Lee J.H., Kwak M.K. Surface texturing methods for solar cell efficiency enhancement. International Journal of Precision Engineering and Manufacturing. 2020; 21(7): 1389—1398. https://doi.org/10.1007/s12541-020-00337-5
11. Otto M., Algasinger M., Branz H., Gesemann B., Gimpel T., Füchsel K., Käsebier T., Kontermann S., Koynov S., Li X., Naumann V., Oh J., Sprafke A.N., Ziegler J., Zilk M., Wehrspohn R.B. Black silicon photovoltaics. Advanced Optical Materials. 2015; 3(2); 147—164. https://doi.org/10.1002/adom.201400395
12. Addonizio M.L., Antonaia A. Textured p-type crystalline silicon surfaces obtained by multi-step plasma process for SHJ solar cells. Vacuum. 2023; 215: 112284. https://doi.org/10.1016/j.tsf.2017.02.048
13. Mikhailenko M.S., Pestov A.E., Chkhalo N.I., Zorina M.V., Chernyshev A.K., Salashchenko N.N., Kuznetsov I.I. Influence of ion-beam etching by Ar ions with an energy of 200-1000 eV on the roughness and sputtering yield of a single-crystal silicon surface. Applied Optics. 2022; 61(10): 2825—2833. https://doi.org/10.1364/AO.455096
14. Mikhailenko M.S., Pestov A.E., Chernyshev A.K., Zorina M.V., Chkhalo N.I., Salascshenko N.N. Study of the effect of neon ion energy on the surface roughness of the main cuts of monocrystalline silicon during ion etching. Technical Physics. 2023; 68(7): 975—979. https://doi.org/10.61011/TP.2023.07.56648.114-23
15. Zorina M.V., Kraev S.A., Lopatin A.Y., Mikhailenko M.S., Okhapkin A.I., Perekalov A.A., Pestov A.E., Chernyshev A.K., Chkhalo N.I., Kuznetsov I.I. On the formation of an anti-reflection layer on the surface of single-crystal silicon by ion-beam etching. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2023; 17(S1): S259—S264. https://doi.org/10.1134/S1027451023070583
16. TELECOM-STV. http://www.telstv.ru/?page = en_silicon_wafers
17. Chkhalo N.I., Kluenkov E.B., Pestov A.E., Polkovnikov V.N., Raskin D.G., Salashchenko N.N., Suslov L.A., Toropov M.N Manufacturing of XEUV mirrors with a sub-nanometer surface shape accuracy. Nuclear Instruments and Methods in Physics Research A. 2009; 603: 62—65. https://doi.org/10.1016/j.nima.2008.12.160
18. Chkhalo N.I., Salashchenko N.N., Zorina M.V. Note: A stand on the basis of atomic force microscope to study substrates for imaging optics. Review of Scientific Instruments. 2015; 86(1): 016102. https://doi.org/10.1063/1.4905336
19. Chkhalo N.I., Churin S.A., Pestov A.E., Salashchenko N.N., Vainer Yu.A., Zorina M.V. Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics. Optics Express. 2014; 22(17): 20094—20106. https://doi.org/10.1364/OE.22.020094
20. Nechay А.N., Perekalov А.А., Chkhalo N.I., Salashchenko N.N., Zabrodin I.G., Kaskov I.A., Pestov A.Ye. Modular device for the formation and study of cluster beams of inertand molecular gases. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2019; (9): 83—92. (In Russ.). https://doi.org/10.1134/S0207352819090099
21. Bradley R.M., Harper J.M.E. Theory of ripple topography induced by ion bombardment. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1988; 6(4): 2390. https://doi.org/10.1116/1.575561
Supplementary files
Review
For citations:
Zorina M.V., Mikhailenko M.S., Pestov A.E., Perekalov A.A., Chkhalo N.I. Formation of an antireflective structure on the surface of single-crystal silicon by accelerated Xe ions. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):287-294. (In Russ.) https://doi.org/10.17073/1609-3577j.met202408.608