Электролюминесценция эрбия в пленках In2O3:Er, ВЧ-магнетронно напыленных на подложку кремния
https://doi.org/10.17073/1609-3577j.met202507.651
Аннотация
Пленки In2O3:Er были осаждены на подложку кремния с помощью ВЧ-магнетронного распыления-осаждения. При этом формируется твердый раствор ((In1-xErx)2O3). В исследуемой гетероструктуре: подложка-n-Si/пленка-In2O3:Er/контакт-ITO при пропускании тока наблюдается электролюминесценция эрбия на длине волны 1,534 мкм. Предложен механизм возбуждения атомов эрбия с помощью рекомбинации электрон-дырочных пар, когда электрон находится в зоне проводимости оксида индия, а дырка в проводящем канале посередине запрещенной зоны, обусловленном дефектными состояниями. Таким образом, энергия электрон-дырочных пар меньше ширины запрещенной зоны оксида индия и составляет 1,56 эВ. Тогда при рекомбинации электрон-дырочных пар сначала резонансно возбуждается третье возбужденное состояние иона Er3+ 4I9/2 (1,53 эВ). Затем происходит безизлучательная релаксация к первому возбужденному состоянию 4I13/2 (0,81 эВ) и далее переход в основное состояние 4I15/2 с испусканием фотона на длине волны 1,534 мкм.
Ключевые слова
Об авторах
К. В. ФеклистовРоссия
пpосп. акад. Лавpентьева, д. 13, Новосибирск, 630090
Феклистов Константин Викторович — канд. физ.-мат. наук, младший научный сотрудник
А. Г. Лемзяков
Россия
пpосп. акад. Лавpентьева, д. 11, Новосибирск, 630090;
Никольский просп., д. 1, Кольцово, 630559
Лемзяков Алексей Георгиевич — научный сотрудник
Д. С. Абрамкин
Россия
пpосп. акад. Лавpентьева, д. 13, Новосибирск, 630090
Абрамкин Демид Суад
К. А. Свит
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Свит Кирилл Аркадьевич
А. М. Пугачев
Россия
просп. Акад. Коптюга, д. 1, Новосибирск, 630090
Пугачев Алексей Маркович — канд. физ.-мат. наук, старший научный сотрудник
В. А. Володин
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090;
ул. Пирогова, д. 2, Новосибирск, 630090
Володин Владимир Алексеевич
Д. В. Марин
Россия
ул. Пирогова, д. 2, Новосибирск, 630090
Марин Денис Викторович
Е. В. Спесивцев
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Спесивцев Евгений Васильевич — канд. техн. наук, старший научный сотрудник
Л. Н. Сафронов
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Сафронов Леонид Николаевич
С. А. Кочубей
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Кочубей Сергей Александрович
К. С. Ершов
Россия
ул. Институтская, д. 3, Новосибирск, 630090
Ершов Кирилл Сергеевич
А. В. Капишников
Россия
ул. Пирогова, д. 2, Новосибирск, 630090;
пpосп. Акад. Лавpентьева, д. 5, Новосибирск, 630090
Капишников Александр Владимирович
А. Н. Шмаков
Россия
Никольский просп., д. 1, Кольцово, 630559
Шмаков Александр Николаевич
А. А. Шкляев
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090;
ул. Пирогова, д. 2, Новосибирск, 630090
Шкляев Александр Андреевич
Ю. А. Живодков
Россия
пpосп. Акад. Лавpентьева, д. 13, Новосибирск, 630090
Живодков Юрий Алексеевич
Список литературы
1. Sun C., Wade M., Lee Y., Orcutt J.S., Alloatti L., Georgas M.S., Waterman A.S., Shainline J.M., Avizienis R.R., Lin S., Moss B.R., Kumar R., Pavanello F., Atabaki A.H., Cook H.M., Ou A.J., Leu J.C., Chen Y.-H., Asanović K., Ram R.J., Popović M.A., Stojanović V.M. Single-chip microprocessor that communicates directly using light. Nature. 2015; 528: 534—538. https://doi.org/10.1038/nature16454
2. Atabaki A.H., Moazeni S., Pavanello F., Gevorgyan H., Notaros J., Alloatti L., Wade M.T., Sun Ch., Kruger S.A., Al Qubaisi H.M.K., Wang I., Zhang B., Khilo A., Baiocco Ch.V., Popović M.A., Stojanović V.M., Rajeev J. Ram. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature. 2018; 556, 349—354. https://doi.org/10.1038/s41586-018-0028-z
3. Феклистов К.В., Лемзяков А.Г., Шкляев А.А., Протасов Д.Ю., Дерябин А.С., Спесивцев Е.В., Гуляев Д.В., Пугачев А.М., Есаев Д.Г. Барьеры для инжекции электронов и дырок из подложки кремния в ВЧ-магнетронно напыленные пленки In2O3 : Er. Известия высших учебных заведений. Материалы электронной техники. 2023;26(3):234-247. https://doi.org/10.17073/1609-3577j.met202305.529
4. Cornet Ch., Léger Y., Robert C. Integrated lasers on silicon. Elsevier Ltd.; 2016. 178 p. https://doi.org/10.1016/C2015-0-01237-0
5. Di L., Kurczveil G., Huang X., Zhang C., Srinivasan S., Huang Z., Seyedi M.A., Norris K., Fiorentino M., Bowers J.E., Beausoleil R.G. Heterogeneous silicon light sources for datacom applications. Optical Fiber Technology. 2018; 44: 43—52. https://doi.org/10.1016/j.yofte.2017.12.005
6. Norman J.C., Jung D., Wan Y., Bowers J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics. 2018; 3: 030901. https://doi.org/10.1063/1.5021345
7. Jung D., Norman J., Wan Y., Liu S., Herrick R., Selvidge J., Mukherjee K., Gossard A.C., Bowers J.E. Recent advances in InAs quantum dot lasers grown on on-Axis (001) silicon by molecular beam epitaxy. Physica Status Solidi (A). 2019; 216(1): 1800602. https://doi.org/10.1002/pssa.201800602
8. Jung D., Herrick R., Norman J., Turnlund K., Jan C., Feng K., Gossard A.C, Bowers J.E. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Applied Physics Letters. 2018; 112(15): 153507. https://doi.org/10.1063/1.5026147
9. Mukherjee K., Selvidge J., Jung D., Norman J., Taylor A.A., Salmon M., Liu A.Y., Bowers J.E., Herrick R.W. Recombination-enhanced dislocation climb in InAs quantum dot lasers on silicon. Journal of Applied Physics. 2020; 128(2): 025703. https://doi.org/10.1063/1.5143606
10. Shang C., Hughes E., Wan Y., Dumont M., Koscica R., Selvidge J., Herrick R., Gossard A.C., Mukherjee K., Bowers J.E. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica. 2021; 8(5): 749—754. https://doi.org/10.1364/OPTICA.423360
11. Carnall W.T., Fields P.R., Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. The Journal of Chemical Physics. 1968; 49(10): 4424—4442. http://dx.doi.org/10.1063/1.1669893
12. Gruber J.B., Henderson J.R., Muramoto M., Rajnak K., Conway J.G. Energy levels of single‐crystal erbium oxide. The Journal of Chemical Physics. 1966; 45(2): 477—482. http://dx.doi.org/10.1063/1.1727592
13. Ennen H., Schneider J., Pomrenke G., Axmann A. 1.54 mkm luminescence of erbium implanted III-V semiconductors and silicon. Applied Physics Letters. 1983; 43(10): 943—945. http://dx.doi.org/10.1063/1.94190
14. Polman A. Erbium implanted thin film photonic materials. Journal of Applied Physics. 1997; 82(1): 1—39. https://doi.org/10.1063/1.366265
15. Kenyon A.J. Topical review: Erbium in silicon. Semiconductor Science and Technology. 2005; 20(12): R65—R84. https://doi.org/10.1088/0268-1242/20/12/R02
16. Coffa S., Franz`o G., Priolo F. Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes. Journal of Applied Physics. 1997; 81(6): 2784—2793. https://doi.org/10.1063/1.363935
17. Coffa S., Franzò G., Priolo F. High efficiency and fast modulation of Er‐doped light emitting Si diodes. Applied Physics Letters. 1996; 69(14): 2077—2079. https://doi.org/10.1063/1.116885
18. Polman A., van den Hoven G.N., Custer J.S., Shin J.H., Serna R., Alkemade P.F.A. Erbium in crystal silicon: Optical activation, excitation, and concentration limits. Journal of Applied Physics. 1995; 77(3): 1256—1262. https://doi.org/10.1063/1.358927
19. Gusev O.B., Bresler M.S., Pak P.E., Yassievich I.N., Forcales M., Vinh N.Q., Gregorkiewicz T. Excitation cross section of erbium in semiconductor matrices under optical pumping. Physical Review B. 2001; 64(7): 075302. https://doi.org/10.1103/PhysRevB.64.075302
20. Priolo F., Franzo G., Coffa S., Carnera A. Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si. Physical Review B. 1998; 57(8): 4443. https://doi.org/10.1103/PhysRevB.57.4443
21. Coffa S., Franz G., Priolo F., Polman A., Serna R. Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. Physical Review B. 1994; 49(23): 16313. https://doi.org/10.1103/PhysRevB.49.16313
22. Bradley J.D.B., Pollnau M. Erbium‐doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews. 2011; 5(3): 368—403. https://doi.org/10.1002/lpor.201000015
23. Wang S., Eckau A., Neufeld E., Carius R., Buchal Ch. Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes. Applied Physics Letters. 1997; 71(19): 2824—2826. https://doi.org/10.1063/1.120147
24. Krzyzanowska H., Ni K.S., Fu Y., Fauchet P.M. Electroluminescence from Er-doped SiO2/nc-Si multilayers under lateral carrier injection. Materials Science and Engineering: B. 2012; 177(17): 1547—1550. https://doi.org/10.1016/j.mseb.2011.12.032
25. Berencen Y., Illera S., Rebohle L., Ramirez J.M., Wutzler R., Cirera A., Hiller D., Rodríguez J.A., Skorupa W., Garrido B. Luminescence mechanism for Er3+ ions in a silicon-rich nitride host under electrical pumping. Journal of Physics D: Applied Physics. 2016; 49(8): 085106. https://doi.org/10.1088/0022-3727/49/8/085106
26. Zhu C., Lv C., Gao Z., Wang C., Li D., Ma X., Yang D. Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO2 films. Applied Physics Letters. 2015; 107(13): 131103. https://doi.org/10.1063/1.4932064
27. Yang Y., Li Y., Xiang L., Ma X., Yang D. Low-voltage driven ~1.54 μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: Energy transfer from ZnO host to erbium ions. Applied Physics Letters. 2013; 102(18): 181111. http://dx.doi.org/10.1063/1.4804626
28. Yang Y., Jin L., Ma X., Yang D. Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure. Applied Physics Letters. 2012; 100(3): 031103. http://dx.doi.org/10.1063/1.3678026
29. Feklistov K.V., Lemzyakov A.G., Prosvirin I.P., Gismatulin A.A., Shklyaev A.A., Zhivodkov Y.A., Krivyakin G.K., Komonov A.I., Kozhukhov А.S., Spesivsev E.V., Gulyaev D.V., Abramkin D.S., Pugachev A.M., Esaev D.G., Sidorov G.Yu. Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3 : Er films. Materials Research Express. 2020; 7(12): 25903. https://doi.org/10.1088/2053-1591/abd06b
30. Kim H.K., Li C.C., Nykolak G., Becker P.C. Photoluminescence and electrical properties of erbium-doped indium oxide films prepared by RF sputtering. Journal of Applied Physics. 1994; 76(12): 8209—8211. https://doi.org/10.1063/1.357882
31. Xiao Q., Zhu H., Tu D., Ma E., Chen X. Near-infrared-to-near-infrared downshifting and near-infrared-to-visible upconverting luminescence of Er3+-doped In2O3 nanocrystals. The Journal of Physical Chemistry C. 2013; 117(20): 10834—10841. http://dx.doi.org/10.1021/jp4030552
32. Tahar R.B.H., Ban T., Ohya Y., Takahashi Y. Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics. 1998; 83(5): 2631—2645. https://doi.org/10.1063/1.367025
33. Hamberg I., Granqvist C.G. Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics. 1986; 60(11): R123—R159. https://doi.org/10.1063/1.337534
34. Зи С. Физика полупроводниковых приборов. Пер. с англ. В 2-х кн. М:. Мир; 1984. Кн. 1. 456 с.
35. Weiher R.L., Ley R.P. Optical properties of indium oxide. Journal of Applied Physics. 1966; 37(1): 299—302. http://dx.doi.org/10.1063/1.1707830
36. King P.D.C., Veal T.D., Fuchs F., Wang Ch.Y., Payne D.J., Bourlange A., Zhang H., Bell G.R., Cimalla V., Ambacher O., Egdell R.G., Bechstedt F., McConville C.F. Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B. 2009; 79(20): 205211. https://doi.org/10.1103/PhysRevB.79.205211
37. Kern W., Puotinen D.A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review. 1970; 31: 187—206. URL: https://www.americanradiohistory.com/ARCHIVE-RCA/RCA-Review/RCA-Review-1970-Jun.pdf
38. Tsybulya S. V., Cherepanova S. V., Soloviyova L. P. Polycrystal software package for IBM/PC. Journal of structural chemistry. 1996; 37(2): 332-334. https://doi.org/10.1007/BF02591064
39. de Brito A. S. et al. Structural, optical, and magnetic characterization of Er-doped In2O3 nanoparticles. Journal of Alloys and Compounds. 2024; 990: 174353. https://doi.org/10.1016/j.jallcom.2024.174353.
40. Shayapov V. R. et al. Highly textured AlN films deposited by pulsed DC magnetron sputtering with optimized process parameters. Solid State Communications. 2025; 397: 115821. https://doi.org/10.1016/j.ssc.2024.115821
41. Patterson A. L. The Scherrer formula for X-ray particle size determination. Physical review. 1939; 56(10): 978. https://doi.org/10.1103/PhysRev.56.978
42. G. Nilsson and G. Nelin. Study of the homology between silicon and germanium by thermal-neutron spectroscopy. Phys. Rev. B. 1972; 6: 3777. https://doi.org/10.1103/PhysRevB.6.3777
43. Brockhouse B.N. Lattice Vibrations in Silicon and Germanium, Phys. Rev. Lett. 1959; 2: 256. https://doi.org/10.1103/PhysRevLett.2.256
44. Green, M., Zhao, J., Wang, A. et al. Efficient silicon light-emitting diodes. Nature. 2001; 412: 805–808. https://doi.org/10.1038/35090539
45. Sveinbjornsson E.O. and Weber J. Room temperature electroluminescence from dislocation-rich silicon. Appl. Phys. Lett. 1996; 69: 2686. http://dx.doi.org/10.1063/1.117678
Рецензия
Для цитирования:
Феклистов К.В., Лемзяков А.Г., Абрамкин Д.С., Свит К.А., Пугачев А.М., Володин В.А., Марин Д.В., Спесивцев Е.В., Сафронов Л.Н., Кочубей С.А., Ершов К.С., Капишников А.В., Шмаков А.Н., Шкляев А.А., Живодков Ю.А. Электролюминесценция эрбия в пленках In2O3:Er, ВЧ-магнетронно напыленных на подложку кремния. Известия высших учебных заведений. Материалы электронной техники. https://doi.org/10.17073/1609-3577j.met202507.651
For citation:
Feklistov K., , , , , , , , , , , , , , 1.534 mkm Er electroluminescence in the RF magnetron deposited In2O3:Er films on Si substrate. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. https://doi.org/10.17073/1609-3577j.met202507.651






























