Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Directional Crystallization of Multicrystalline Silicon in a Weak Melt Convection and Gas Exchange

https://doi.org/10.17073/1609-3577-2015-2-95-102

Abstract

For the first time silicon was grown by means of directional crystallization and using the submerged into the melt heater multi−crystalline. To study interaction of the heater casing material with molten silicon we used the model of the heater in the form of a graphite plate coated with a protective layer of SiC of the special structure. During the crystallization, the plate was on the melt surface and almost completely overlaid the surface of the melt, thereby significantly reducing the intensity of gas exchange between the melt and the atmosphere in the furnace. The absence of a free surface of the melt resulted in the absence of Marangoni convection, and the crystal grew under the conditions of reduced melt convection, especially at the final stages of crystallization, when the thickness of the melt layer was much less than the cross size of the crucible. The crystal structure has a strongly pronounced columnar structure; measured data on resistivity varies over the ingot height from 1 to 1.3 Ω⋅cm, and the lifetime of minority carriers is about 3.7 µs. FTIR studies of a carbon content showed the longitudinal distribution to fundamentally differ from the linear dependence typical for the method of directional crystallization.

About the Author

M. A. Gonik
Centre for Material Researches «Photon»
Russian Federation

Cand. Sci. (Eng.), Director,

10 Cheska Lipa Str., Aleksandrov, Vladimir Region 601655



References

1. von Ammon W., Gelfgat Yu., Gorbunov L., Mühlbauer A., Muiznieks A., Makarov Y., Virbulis J., Müller G. Application of magnetic fields in industrial growth of silicon single crystals, The 15th Riga and 6th PAMIR Conf. on Fundamental and Applied MHD. Riga, 2005. Pp. 41—54.

2. Nouri A., Delannoy Y., Zaïdat K. Control of multicrystalline photovoltaic silicon solidification by using a travelling magnetic field. In proceeding of: PAMIR. Borgo (France), 2011.

3. Tsivinskaya Y. S., Popov V. N. Control of mass transfer processes in solidification of polycrystalline silicon by Bridgman technique. Izvestiya Tomskogo Politehnicheskogo universiteta = Bulletin of University of Tomsk. 2012, vol. 320, no. 2, pp. 140—144. (In Russ).

4. Antonov P. V. Berdnikov V. S. Numerical modeling of coupled heat exchange in solidification of the silicon ingots by Bridgman technique. Trudy Mezhdunarodnoi konferenstii. Sovremennye problemy prikladnoi matematiki I mehaniki: teoria, ersperiment I praktika = Proceedings of Int. Conference. Modern problems of applied mathimatics and mechanics: theory, experiment and practice. Novosibirsk, 2011. (In Russ).

5. Presnyakov R. V. Vyraschivanie multikristallicheskogp kremnia na osnove metallurgicheskogo kremnia vysokoi chistoty: avtoref. diss. … kand. tech. n. [Crystal growth of multi−crystalline silicon on the basis of the high−purity metallurgical silicon PhD (Tech.− Sci.)]. Irkutsk, 2013. (In Russ).

6. Gonik M. A., Cröll A. Silicon crystal growth by the modified FZ technique. CrystEngComm. 2013, vol. 15, no. 12, pp. 2287—2293. DOI: 10.1039/C2CE26480C

7. Gonik M., Riepe S., Schmid C., Smirnov A. Material development for directional solidification of multicrystalline silicon by AHP method. In proceedings of ICCG−17. Warsaw (Poland), 2013.

8. Ostrogorsky A. G. Single−crystal growth by the submerged heater method. Meas. Sci. Technol., 1990, vol. 1, pp. 463—464.

9. Golyshev V. D., Gonik M. A. A temperature field investigation in case of crystal growth from the melt with a plane interface on exact determination thermal conditions. Cryst. Prop. and Preparation, 1991, vol. 36−38, p. 623.

10. Marchenko M. P., Golyshev V. D., Gonik M. A., Fryazinov I. V. Modeling of the process of Si crystal growth by AHP method. Tezisy doklodov 3 Natsionalnoy konferentsii po vyraschivaniu kremnia = Abstracts of the 3rd National conference of silicon crystal growth. Moscow, 2003. Pp. 64—66. (In Russ).

11. Gonik M. A., Nepomnyaschih A. I., Kalaev V. V., Smirnov A. D. Application of the Submerged AHP Heater for the Growing of the Multi−crystalline Silicon. Abstracts of the ACCGE−17 Conf. Lake Geneva (Wisconsin, USA), 2009.

12. Breitenstein O., Rakotoniaina J. P., Al Rifai M. H., Werner M. Shunt types in crystalline silicon solar cells. Prog. Photovolt: Res. Appl. 2004, vol. 12, no. 7, p. 529—538. DOI: 10.1002/pip.544

13. Reimann C., Trempa M., Friedrich J., Mueller G. About the formation and avoidance of C and N related precipitates during directional solidification of multi−crystalline silicon from contaminated feed stock. J. Cryst. Growth, 2010, vol. 312, no. 9, pp. 1510—1516. DOI: 10.1016/j.jcrysgro.2010.02.003

14. Gao B., Chen X.J., Nakano S., Kakimoto K. Crystal growth of high−purity multicrystalline silicon using a unidirectional solidification furnace for solar cells. J. Cryst. Growth. 2010, vol. 312, no. 9, pp.1572—1576. DOI: 10.1016/j.jcrysgro.2010.01.034

15. Gonik M. A., Gonik M. A., Cröll A. Si−Ge crystal growth by AHP method. Izvestiya vuzov. Materially elektronnoi tehniki = Materials of electronic technology. 2013, no. 3, pp. 12—19. (In Russ).

16. Filonov K. N., Kurlov V. N., Klassen N. V., Kudrenko E. A., Shteinman E. A. Peculiarities of nanostructured silicon carbide films and coatings obtained by novel technique. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya = Bulletin of the Russian Academy of Sciences: Physics. 2009, vol. 73, no. 10, pp. 1457–1459. (In Russ).

17. Belmann M. Personal communication, 2013.

18. Binetti S., Gonik M., Le Donne A., Cröll A. Silicon sample for PV application grown under re−duced melt convection. J. Cryst. Growth. 2015, vol. 417, no. 5, pp. 9—15. DOI: 10.1016/j.jcrysgro.2014.11.039

19. Binetti S., Acciarri M., Savigni C., Brianza A., Pizzini S., Musinu A. Effect of nitrogen con−tamination by crucible encapsulation on polycrystalline silicon material quality. Materials Science and Engineering B. 1996, vol. 36, no. 1, pp. 68—72. DOI:10.1016/0921−5107(95)01268−0.

20. Müller G. Convection and inhomogeneity in crystal growth from the melt. Berlin;Heidelberg: Springer−Verlag, 1988. Vol. 12, 136 p. DOI: 10.1007/978−3−642−73208−9_1


Review

For citations:


Gonik M.A. Directional Crystallization of Multicrystalline Silicon in a Weak Melt Convection and Gas Exchange. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(2):95-102. (In Russ.) https://doi.org/10.17073/1609-3577-2015-2-95-102

Views: 1361


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)