Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Analysis of diffusion profiles of phosphorus in gallium-doped germanium using method of coordinate-dependent diffusion

https://doi.org/10.17073/1609-3577-2018-2-122-128

Abstract

The phosphorus concentration profiles in germanium in In0,01Ga0,99As/In0,56Ga0,44P/Ge heterostructures with gallium co-diffusion, that were obtained during first cascade of a multicascade solar cell formation were analyzed. The diffusion of phosphorus took place from the layer In0,56Ga0,44P together with the diffusion of gallium in a strongly gallium-doped germanium substrate, which determined the features of the diffusion process. First of all, co-diffusion of gallium and phosphorus leads to formation of two p—n junctions. Fick’s laws cannot be used for diffusion description. Distribution of the P diffusivity (DP) in the depth of the sample was determined by two methods —Boltzmann—Matano (version of Sauer—Freise) and the coordinate-dependent diffusion method. It is shown that when we have used the coordinate-dependent diffusion method, the DP values are more consistent with the known literature data due to taking into account the drift component of diffusion. The tendency of DP to increase at the heterostructure boundary and to decrease at approaching to the main p—n junction is observed for both calculation methods. DP increase in the near-surface region of the p—n-junction, whose field is directed to the interface of the heterostructure, and the decrease in the region of the main p-n junction, whose field is directed in the opposite direction, as well as the observed growth of DP with the electron concentration, leads to the conclusion that diffusion in this case takes place as the part of negatively charged VGeP complexes, as in the case of P diffusion alone.

About the Authors

S. P. Kobeleva
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Svetlana P. Kobeleva: Associate Professor



I. M. Anfimov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Ilya M. Anfimov: Engineer



A. V. Turutin
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Anderi V. Turutin: Postgraduate Student



S. Yu. Yurchuk
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Sergey Yu. Yurchuk: Associate Professor



V. M. Fomin
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Vladimir M. Fomin: Postgraduate Student



References

1.  Boltaks B. I. Diffusion in Semiconductors. New York: Academic Press, 1963. 378 p.

2.  Dunlap W. C. Diffusion of impurities in germanium. Phys Rev., 1954, vol. 94, no. 6, pp. 1531—1540. DOI: 10.1103/PhysRev.94.1531

3.  Mehrer H. Diffusion in Solids. Fundametals, methods, materials, diffusion-controlled proceses. Berlin Heidelberg: Springer-Verlag, 2007, 654 p. DOI: 10.1007/978-3-540-71488-0

4.  Bracht H., Stolwijk N. A. Diffusion in Si, Ge, and their alloys. In: Diffusion in Semiconductors and Non-Metallic Solids. Subvolume A. Diffusion in Semiconductors. Ed. D. Beke. Berlin; Heidelberg: Springer-Verlag, 1998, pp. 2—228. DOI: 10.1007/b53031

5.  Seeger A., Chik K. P. Diffusion mechanism and point defects in silicon and germanium. Phys. stat. sol. (b), 1968, vol. 29, no. 2, pp. 455—542. DOI: 10.1002/pssb.19680290202

6.  Matsumoto S., Niimi T. Concentration dependence of a diffusion coefficient at phosphorus diffusion in germanium. J. Electrochem. Soc., 1978, vol. 125, no. 8, pp. 1307—1309. DOI: 10.1149/1.2131668

7.  Södervall U., Friesel M. Diffusion of silicon and phosphorus into germanium as studied by secondary ion mass spectrometry. Defect Diff. Forum, 1997, vol. 143–147, pp. 1053—1058. DOI: 10.4028/www.scientific.net/DDF.143-147.1053

8.  Brotzmann S., Bracht H. Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium. J. Appl. Phys., 2008, vol. 103, no. 3, p. 033508. DOI: 10.1063/1.2837103

9.  Canneaux T., Mathiot D., Ponpon J.-P., Leroy Y. Modeling of phosphorus diffusion in Ge accounting for a cubic dependence of the diffusivity with the electron concentration. Thin Solid Films, 2010, vol. 518, no. 9, pp. 2394—2397. DOI: 10.1016/j.tsf.2009.09.171

10.  Bracht H., Schneider S., Kube R. Diffusion and doping issues in germanium. Microelectronic Engineering, 2011, vol. 88, no. 4, pp. 452—457. DOI: 10.1016/j.mee.2010.10.013

11.  Claeys C., Simoen E. Germanium-based technologies. From materials to devices. Elsevier, 2007, 480 p. DOI: 10.1016/B978-0-08-044953-1.X5000-5

12.  Cai Y., Camacho-Aguilera R., Bessette J. T., Kimerling L. C., Michel J. High phosphorous doped germanium: Dopant diffusion and modeling. J. Appl. Phys., 2012, vol. 112, no. 3, p. 034509. DOI: 10.1063/1.4745020

13.  Tahini H. A., Chroneos A., Grimes R. W., Schwingenschlögl U., Bracht H. Point defect engineering strategies to retard phosphorous diffusion in germanium. Phys. Chem. Chem. Phys., 2013, vol. 15, no. 1, pp. 367—371. DOI: 10.1039/c2cp42973j

14.  Chen Wang, Cheng Li, Shihao Huang, Weifang Lu, Guangming Yan, Maotian Zhang, Huanda Wu, Guangyang Lin, Jiangbin Wei, Wei Huang, Hongkai Lai, Songyan Chen. Phosphorus diffusion in germanium following implantation and excimer laser annealing. Appl. Surf. Sci., 2014, vol. 300, pp. 208—212. DOI: 10.1016/j.apsusc.2014.02.041

15.  Chroneos A., Bracht H. Diffusion of n-type dopants in germanium. Appl. Phys. Rev., 2014, vol. 1, no. 1, p. 011301. DOI: 10.1063/1.4838215

16.  Souigat A., Aiadi K. E., Daoudi B. The ratio of the contributions and activation energies to phosphorus diffusion from doubly negatively charged and triply negatively charged vacancies in germanium. J. Optoelectron. Adv. M., 2015, vol. 17, nos. 7–8, pp. 1070—1074.

17.  Green M. A., Emery K., Hishikawa Y., Warta W., Dunlop E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl., 2015, vol. 21, no. 1, pp. 1—9. DOI: 10.1002/pip.2573

18.  King R. R., Bhusari D., Larrabee D., Liu X.-Q., Rehder E., Edmondson K., Cotal H., Jones R. K., Ermer J. H., Fetzer C. M., Law D. C., Karam N. H. Solar cell generations over 40 % efficiency. Prog. Photovolt. Res. Appl., 2012, vol. 20, no. 6, pp. 801—815. DOI: 10.1002/pip.1255

19.  Kalyuzhnyy N. A., Gudovskikh A. S., Evstropov V. V., Lantratov V. M., Mintairov S. A., Timoshina N. Kh., Shvarts M. Z., Andreev V. M. Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells. Semiconductors, 2010, vol. 44, no. 11, pp. 1520—1528. DOI: 10.1134/S106378261011028X

20.  Kobeleva S. P., Anfimov I. M., Yurchuk S. Yu., Vygovskaya E. A., Zhalnin B. V. Influence of In0.56Ga0.44P/Ge heterostructure on diffusion of phosphor in germanium within the formation of multiple solar cells. Tech. Phys. Lett., 2013, vol. 39, no. 1, pp. 27—29. DOI: 10.1134/S1063785013010173

21.  Kobeleva S. P., Anfimov I. M., Yurchuk S. Y., Turutin A. V. Some aspects of phosphorus diffusion in germanium in In0,01Ga0,99As/In0,56Ga0,44P/Ge heterostructures. J. Nano-Electron. Phys., 2013, vol. 5, no. 4, pp. 04021-1—04021-3. URL: https://jnep.sumdu.edu.ua/download/numbers/2013/4/articles/jnep_2013_V5_04021.pdf

22.  Kobeleva S. P., Kuzmin D. A., Yurchuk S. Yu., Murashev V. N., Anfimov I. M., Schemerov I. V., Zhalnin V. B. Phosphorus diffusion in germanium at the InGaP/Ge heterostructure boundary. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2011, no. 2, pp. 56—60. (In Russ.)

23.  Malkovich R. Sh. On the analysis of coordinate-dependent diffusion. Technical Physics. The Russian Journal of Applied Physics, 2006, vol. 51, no. 2, pp. 283—286. (In Russ.). DOI: 10.1134/S106378420602023X

24.  Zeeger K. Semiconductor physics. Berlin; Heidelberg: Springer, 2004, 548 p. DOI: 10.1007/978-3-662-09855-4


Review

For citations:


Kobeleva S.P., Anfimov I.M., Turutin A.V., Yurchuk S.Yu., Fomin V.M. Analysis of diffusion profiles of phosphorus in gallium-doped germanium using method of coordinate-dependent diffusion. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(2):122-128. (In Russ.) https://doi.org/10.17073/1609-3577-2018-2-122-128

Views: 787


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)