Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Contact and contactless methods for measuring the parameters of porous silicon

https://doi.org/10.17073/1609-3577-2018-2-112-121

Abstract

In this work we have used contact and contactless techniques to measure the electrical resistivity of single crystal silicon wafers with porous layers of variable thickness synthesized on the surface. The porous layers have been synthesized on the surfaces of single crystal wafers with well pronounced microroughness pattern, either textured or grinded. We have used the classic four-probe method with a linear probe arrangement as the contact measurement technique, and the resonance microwave method based on microwave absorption by free carriers as the contactless measurement technique. Electrical resistivity distribution over the specimen surface has been mapped based on the measurement results. We have demonstrated a general agreement between the electrical resistivity distribution patterns as measured using the contact and contactless measurement techniques. To analyze the electrical resistivity scatter over the specimen surface area we have simulated the field distribution in the electrolyte during porous layer formation in a non-planar anode cell. The regularities of the electrical resistivity spatial distribution in different types of specimens are accounted for by specific porosity formation mechanisms which in turn are controlled by the initial microroughness pattern and the field distribution pattern in the electrolyte for each specific case.

About the Authors

N. V. Latukhina
Samara University
Russian Federation

34 Moskovskoye shosse, Samara 443086

Natalya V. Latukhina: Cand. Sci. (Eng.), Associate Professor



S. P. Kobeleva
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Svetlana P. Kobeleva: Cand. Sci. (Phys.-Math.), Associate Professor



G. A. Rogozhina
Samara University
Russian Federation

34 Moskovskoye shosse, Samara 443086

Galina A. Rogozhina: Assistant



I. A. Shishkin
Samara University
Russian Federation

34 Moskovskoye shosse, Samara 443086

Ivan A. Shishkin: Student



I. V. Schemerov
National University of Science and Technology MISiS
Russian Federation

4 Leninsky Prospekt, Moscow 119049

Ivan V. Schemerov: Cand. Sci. (Eng.), Engineer



References

1.  Zimin S. P. Classification of electrical properties of porous silicon. Semiconductors, 2000, vol. 34, no. 3, pp. 353—357. DOI: 10.1134/1.1187985

2.  Bisi S., Ossicini S., Pavesi L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep., 2000, vol. 38, no. 1–3, pp. l—126. DOI: 10.1016/S0167-5729(99)00012-6

3.  Zimin S. P. Hopping conductivity in low-porosity mesoporous silicon formed on p+-Si:B. Semiconductors, 2006, vol. 40, no. 11, pp. 1350—1352. DOI: 10.1134/S1063782606110170

4.  Sakun E. A., Polyushkevich A. V., Harlashin P. A., Semenova O. V., Korets A. Ya. Development of porous structures on silicon. J. Siberian Federal University. Engineering & Technologies, 2010, vol. 4, no. 3, pp. 430—443. (In Russ.)

5.  Tynyshtykbaev K. B., Ryabikin Yu. A., Tokmoldin S. Zh., Aitmukan T., Rakymetov B. A., Vermenichev R. B. Morfologiya of porous silicon at long anode etching in electrolyte with an internal source of current. Pis’ma v zhurnal tekhnicheskoi fiziki, 2010, vol. 36, no. 11, pp. 104—110. (In Russ.)

6.  Goryachev D. N., Belyakov L. V., Sreseli O. M. On the mechanism of porous silicon formation. Semiconductors, 2000, vol. 34, no. 9, pp. 1090—1093. DOI: 10.1134/1.1309429

7.  Buchin E. Yu., Prokaznikov A. V. Character of n-type electrolyte system dynamics when anodized in hydrofluoric acid solutions. Pis’ma v zhurnal tekhnicheskoi fiziki, 1997, vol. 23, no. 5, pp. 1—7. (In Russ.)

8.  Mozhaev A. V., Prokaznikov A. V., Timofeev V. V. Dynamic discrete three-dimensional model of pore formation in silicon. Issledovano v Rossii = Investigated in Russia. (In Russ.). URL: http://zhurnal.ape.relarn.ru/articles/2006/069

9.  Xiaoge Gregory Zhang. Electrochemistry of Silicon and Its Oxide. N. Y.; Boston; Dordrecht; London; Moscow: Kluwer Academic Publishers, 2004, 510 p.

10.  Allongue P., Kieling V., Gerischer H. Etching mechanism and atomic structure of H-Si(111) surfaces prepared in NH4F. Electrochimica Acta, 1995, vol. 40, no. 10, pp. 1353—1360. DOI: 10.1016/0013-4686(95)00071-L

11.  Tregulov V. V. Poristyi kremnii: tekhnologiya, svoistva, primenenie [Porous Silicon: Technology, Properties, Application]. Ryazan: RGU im. S. A. Esenina, 2011, p. 24. (In Russ.)

12.  Ulin V. P., Ulin N. V., Soldatenkov F. Y.Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism. Semiconductors, 2017, vol. 51, no. 4, pp. 458—472. DOI: 10.1134/S1063782617040212

13.  Ulin V. P., Konnikov S. G. The nature of electrochemical pore-formation in AIIIBV crystals (Pt I). Fizika i tekhnika poluprovodnikov = Semiconductors, 2007, vol. 41, no. 7, pp. 854—866. (In Russ.)

14.  Kunakbaev T. Zh., Tukubaev E. E. Modelirovanie polucheniya poristogo kremniya na atomnom urovne [Simulation of porous silicon production at the atomic level].Khaos i struktury v nelineinykh sistemakh. Teoriya i eksperement. Mezhdun. nauchno-prakt. konferentsiya = Chaos and structures in nonlinear systems. Theory and experiment. International scientific and practical the conference. 2015, no. 1, pp. 171—176. (In Russ.). URL: http://portal.kazntu.kz/files/publicate/2015-10-26-elbib_11.pdf

15.  Piskazhova T. V., Savenkova N. P., Anpilov S. V., Kalmykov A. V., Zaitsev F. S., Anikeev F. A. Three-dimensional mathematical modeling of dynamics interfaces between aluminum, electrolytes and reverse zone of oxidized metal depending on the potencial distribution. J. Siberian Federal University. Engineering & Technologies, 2017, vol. 10, no. 1, pp. 59—73. (In Russ.). DOI: 10.17516/1999-494X-2017-10-1-59-73

16.  Gorodetsky A. E., Tarasova I. L. Simulation of porous silicon structure formation. Math. Models Comput. Simul. 2009, vol. 1, no. 1, pp. 124—130. DOI: 10.1134/S207004820901013X

17.  Latukhina N. V., Dereglazova T. S., Ivkov S. V., Volkov A. V., Deeva V. A. Photoelectrical properties of structure with micro- and nano-porous silicon. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2009, vol. 11, no. 3, pp. 66—70. URL: http://www.ssc.smr.ru/media/journals/izvestia/2009/2009_3_66_70.pdf

18.  Anfimov I. M., Kobeleva S. P., Shchemerov I. V. Ustanovka dlya izmereniya udel’nogo elektrosoprotivleniya beskontaktnym SVCh metodom [Installation for measuring the electrical resistivity by a contactless microwave method]. Materialy I mezhdunarodnoi konf. «Aktual’nye problemy prikladnoi fiziki 2012» = Materials of the I International Conf. «Actual problems of applied physics 2012». Sevastopol, 2012, pp. 82—83.

19.  Lizunkova D., Latukhina N., Chepurnov V., Paranin V. Nanocrystalline silicon and silicon carbide optical properties. Proc. International conference Information Technology and Nanotechnology. Session Computer Optics and Nanophotonics. Samara (Russia), 2017, vol. 1900, pp. 84—89. DOI: 10.18287/1613-0073-2017-1900-84-89


Review

For citations:


Latukhina N.V., Kobeleva S.P., Rogozhina G.A., Shishkin I.A., Schemerov I.V. Contact and contactless methods for measuring the parameters of porous silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(2):112-121. (In Russ.) https://doi.org/10.17073/1609-3577-2018-2-112-121

Views: 1243


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)