Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

How to provide the constant impurity distribution along the ingot

https://doi.org/10.17073/1609-3577-2018-2-69-82

Abstract

On the basis of segregation study in crystal growth from a thin melt layer in presence of the submerged heater the possibility to obtain the uniform material along the height of the ingot is shown. Numerically in modeling of solidification of 200 mm in a diameter Sb doped Ge the accurate solution with account for convection was found in the central part of the domain to coincide with the one dimension problem for the melt layer beginning from 40 mm. Condition to neglect with convection in mass transfer are to be more rigorous: the melt layer should be less than 20 mm. In this case, one may use Tiller’s equation obtained to calculate the axial impurity distribution in approach of the diffusion-control segregation. The analysis of attempts to describe experimental data of crystal growth by use of the simplified equations has shown their validity in case of account for actual crystal growth rate or change in the melt layer thickness during the run, as in expression find by Marchenko et al. The above said makes it possible for to describe analytically the axial distribution of impurity in the ingot, particularly, for B and P in silicon and to recommend the amount of its concentration over the height. The uniform material in the very end of the solidification process of the rest portion of the ingot can be obtained by the variation of the growth rate due to change in the cooling rate with time.

About the Authors

M. A. Gonik
Centre for Material Reseaches «Photon»
Russian Federation

Cheska Lipa Str., Aleksandrov, Vladimir Region 601655

Michael A. Gonik: Cand. Sci. (Eng.), Director



F. Baltaretu
Technical University of Civil Engineering of Bucharest
Romania

Lacul Tei Blvd, no. 122-124, Sector 2, Bucharest 510009

Florin Baltaretu: PhD, Professor, Head of the Department of Thermal Engineering



References

1.  Takagi Y., Okano Y., Minakuchi H., Dost S. Combined effect of crucible rotation and magnetic field on hydrothermal wave. J. Crystal Growth, 2014, vol. 385, pp. 72—76. DOI: 10.1016/j.jcrysgro.2013.04.062

2.  Di Sabatino M., Øvrelid E. J., Olsen E. Distribution of Al, B and P in multi-crystalline Si ingots. Proceedings of the 21th European Photovoltaic Solar Energy Conf. München: WIP Renewable Energies, 2006. URL: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid = 067D423612B5831D8B67C70A457F3B45?doi = 10.1.1.611.5731&rep = rep1&type = pdf

3.  Raffy C., Duffar T. Internal Report, CEA-Grenoble (France), SES No. 15/95, 1995.

4.  Ostrogorsky A. G. Single-crystal growth by the submerged heater method. Meas. Sci. Technol., 1990, vol. 1, no. 5, pp. 463—464. DOI: 10.1088/0957-0233/1/5/017

5.  Müller G. Convection and Inhomogeneities in Crystal Growth from the Melt. In: Crystals: Growth, Properties and Applications, vol. 12. Berlin; Heidelberg: Springer, 1988, pp. 1—136. DOI: 10.1007/978-3-642-73208-9_1

6.  Golyshev V. D., Gonik M. A. A temperature field investigation in case of crystal growth from the melt with a plane interface on exact determination thermal conditions. Crystal Properties and Preparation, 1991, vol. 36–38, pp. 623—630.

7.  Gonik M. A., Tkacheva T. V. Controlled growth of CsI<Tl> single crystals. Inorganic Materials, 2007, vol. 43, no. 11, pp. 1263—1269. DOI: 10.1134/S0020168507110180

8.  Gonik M. A. Directional crystallization of multicrystalline silicon in a weak melt convection and gas exchange. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2015, vol. 18, no. 2, pp. 95—102. (In Russ.). DOI: 10.17073/1609-3577-2015-2-95-102

9.  Ostrogorsky A. G., Marin C., Churilov A., Volz M. P., Bonner W. A., Duffar T. Reproducible Te-doped InSb experiments in Microgravity Science Glovebox at the International Space Station. J. Crystal Growth, 2008, vol. 310, no. 2, pp. 364—971. DOI: 10.1016/j.jcrysgro.2007.10.079

10.  Filonov K. N., Kurlov V. N., Klassen N. V., Kudrenko E. A., Shteinman E. A. Peculiarities of nanostructured silicon carbide films and coatings obtained by novel technique. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya = Bulletin of the Russian Academy of Sciences: Physics, 2009, vol. 73, no. 10, pp. 1457—1459. (In Russ.)

11.  Nakamura S., Hibiya T., Yamamoto F. Thermal conductivity of GaSb and InSb in solid and liquid states. J. Appl. Phys., 1990, vol. 68, no. 10, pp. 5125—5127. DOI: 10.1063/1.347051

12.  Burago N. G., Golyshev V. D., Gonik M. A., Polezhaev V. I., Tsvetovsky V. B. The nature of forced and natural convection and its influence on the distribution of impurities in a crystal during growth using the OTF 1a method. Trudy III Mezhdunarodnoi konferentsii «Kristally: rost, svoistva, real’naya struktura i primenenie» = Proceedings of the III International Conference «Crystals: growth, properties, real structure and application». Alexandrov, 1997, vol. 1, pp. 239—259. (In Russ.)

13.  Churilov A., Ostrogorsky A. G., Volz M. P. Solidification using a baffle in sealed ampoules: Ground-based experiments. J. Crystal Growth, 2006, vol. 295, no. 1, pp. 20—30. DOI: 10.1016/j.jcrysgro.2006.07.024

14.  Dutta P. S., Ostrogorsky A. G. Nearly diffusion controlled segregation of tellurium in GaSb. J. Crystal Growth, 1998, vol. 191, no. 4, pp. 904—908. DOI: 10.1016/S0022-0248(98)00440-0

15.  Dutta P. S., Ostrogorsky A. G. Segregation of Ga in Ge and InSb in GaSb. J. Crystal Growth, 2000, vol. 217, no. 4, pp. 360—365. DOI: 10.1016/S0022-0248(00)00483-8

16.  Tiller W. A., Jackson K. A., Rutter J. W., Chalmers B. The redistribution of solute atoms during the solidification of metals. Acta Metallurgica, 1953, vol. 1, no. 4, pp. 428—437. DOI: 10.1016/0001-6160(53)90126-6

17.  Ostrogorsky A. G., Mosel F., Schmidt M. T. Diffusion-controlled distribution of solute in Sn-1% Bi specimens solidified by the submerged heater method. J. Crystal Growth, 1991, vol. 110, no. 4, pp. 950—954. DOI: 10.1016/0022-0248(91)90655-O

18.  Ostrogorsky A. G., Müller G. Normal and zone solidification using the submerged heater method. J. Crystal Growth, 1994, vol. 137, no. 1–2, pp. 64—71. DOI: 10.1016/0022-0248(94)91248-3

19.  Golyshev V. D., Gonik M. A., Tsvetovsky V. B., Frjazinov I. V., Marchenko M. P. Proceedings of the 3rd International Conference on Single Crystal Growth, Strengthen Problems, Heat and Mass Transfer. Obninsk (Russia), 2000, pp. 125—134.

20.  Pfann W. G. Principles of zone-melting. JOM = The Journal of The Minerals, Metals & Materials Society, 1952, vol. 4, no. 7, pp. 747—753. DOI: 10.1007/BF03398137

21.  Voller V. R., Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transfer, 1987, vol. 30, no. 8, pp. 1709—1719. DOI: 10.1016/0017-9310(87)90317-6

22.  Smirnova O. V., Kalaev V. V., Makarov Yu. N., Abrosimov N. V., Riemann H., Kurlov V. N. Three-dimensional unsteady modeling analysis of silicon transport in melt during Cz growth of Ge1-xSix bulk crystals. J. Crystal Growth, 2007, vol. 303, no. 1, pp. 141—145. DOI: 10.1016/j.jcrysgro.2006.11.150

23.  Golyshev V. D., Gonik M. A., Tsvetovsky V. B. Study of thermal conductivity close to the melting point. High Temperatures-High Pressures, 2003/2004, vol. 35–36, no. 2, pp. 139—148. URL: http://www.eyoungindustry.com/uploadfile/file/20151006/20151006102711_90180.pdf

24.  Sato Y., Nishizuka T., Tachikawa T., Hoshi M., T. Yamamura, Y. Waseda. Viscosity and density of molten germanium. High Temperatures-High Pressures, 2000, vol. 32, pp. 253—260. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.430.3376&rep=rep1&type=pdf

25.  Ratnieks G., Muižnieks A., Mühlbauer A. Modelling of phase boundaries for large industrial FZ silicon crystal growth with the needle-eye technique. J. Crystal Growth, 2003, vol. 255, no. 3–4, pp. 227—240. DOI: 10.1016/S0022-0248(03)01253-3

26.  Takagi Y., Okano Y., Minakuchi H., Dost S. Combined effect of crucible rotation and magnetic field on hydrothermal wave. J. Crystal Growth, 2014, vol. 385, pp. 72—76. DOI: 10.1016/j.jcrysgro.2013.04.062

27.  Raffy C., Duffar T. Internal Report, CEA-Grenoble (France), SES No. 15/95, 1995.

28.  Müller G. Convection and Inhomogeneities in Crystal Growth from the Melt. In: Crystals: Growth, Properties and Applications, vol. 12. Berlin; Heidelberg: Springer, 1988, pp. 1—136. DOI: 10.1007/978-3-642-73208-9_1

29.  Gonik M. A., Tkacheva T. V. Controlled growth of CsI<Tl> single crystals. Inorganic Materials, 2007, vol. 43, no. 11, pp. 1263—1269. DOI: 10.1134/S0020168507110180

30.  Ostrogorsky A. G., Marin C., Churilov A., Volz M. P., Bonner W. A., Duffar T. Reproducible Te-doped InSb experiments in Microgravity Science Glovebox at the International Space Station. J. Crystal Growth, 2008, vol. 310, no. 2, pp. 364—971. DOI: 10.1016/j.jcrysgro.2007.10.079

31.  Nakamura S., Hibiya T., Yamamoto F. Thermal conductivity of GaSb and InSb in solid and liquid states. J. Appl. Phys., 1990, vol. 68, no. 10, pp. 5125—5127. DOI: 10.1063/1.347051

32.  Churilov A., Ostrogorsky A. G., Volz M. P. Solidification using a baffle in sealed ampoules: Ground-based experiments. J. Crystal Growth, 2006, vol. 295, no. 1, pp. 20—30. DOI: 10.1016/j.jcrysgro.2006.07.024


Review

For citations:


Gonik M.A., Baltaretu F. How to provide the constant impurity distribution along the ingot. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018;21(2):69-82. (In Russ.) https://doi.org/10.17073/1609-3577-2018-2-69-82

Views: 468


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)