Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Application of numerical simulation in investigation of memristor structures based on oxides and chalcogenides

https://doi.org/10.17073/1609-3577-2019-4-246-252

Abstract

Models that describe bipolar resistive switching in planar microstructures based on oxide compounds (Bi2Sr2CaCu2O8+x, Nd2-xCexCuO4-y) and bismuth selenide are considered. Metal-isolator-metal planar-type meristor heterostructures were investigated, in which the micro-size is formed by an electrode whose diameter is much smaller than the total size of the structure (it can be both Chervinsky-type microjunctions and film electric electrodes). Another important feature of these heterostructures is the presence of a surface layer several tens of nanometers thick with specific conductivity significantly reduced relative to volume. The change in the resistive properties of such heterostructures is caused by the formation or destruction of the conductive channel through the above-mentioned layer. Numerical simulation has shown that the bipolar resistive switching is significantly influenced by the electrical field distribution topology. A “critical field” model is proposed to describe experimentally observed memristor effects in investigated heterostructures. In this model it is assumed that the change in specific conductivity occurs in those parts of the surface layer where the electric field strength exceeds some critical value. The model of the “critical field” is based on the numerical calculation of the distribution of electrical potential on the distribution of specific conductivity in the structure. In addition, the model allowing to analyze the influence of electrodiffusion of oxygen ions on resistive switching in heterostructures based on Bi2Sr2CaCu2O8+x is considered. At numerical realization of the models a combination of the integro-differential approximation of the differential equations, the multi-grid approach for localization of heterogeneities of physical characteristics, the iterative decomposition method and composite adaptive meshes was used. It allowed tracking the processes under investigation with necessary accuracy. The comparison of simulation results with experimental data is presented.

About the Authors

V. V. Sirotkin
Institute of Microelectronics Technology and High Purity Materials of RAS, 6 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia
Russian Federation
Vadim V. Sirotkin: Cand. Sci. (Phys.-Math.), Leading Researcher


N. A. Tulina
Institute of Solid State Physics of RAS, 2 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432, Russia
Russian Federation
Nataliya A. Tulina: Cand. Sci. (Phys.-Math.), Senior Researcher


References

1. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. The missing memristor found. Nature, 2008, vol. 453, pp. 80—83. DOI: 10.1038/nature06932

2. Ventra M. D., Pershin Yu. V., Chua L. O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE, 2009, vol. 97, no. 10, pp. 1717—1724. DOI: 10.1109/JPROC.2009.2021077

3. Jeong D. S., Thomas R., Katiyar R. S., Scott J. F., Kohlstedt H., Petraru A., Hwang Ch. S. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys., 2012, vol. 75, no. 7, art. no. 076502. DOI: 10.1088/0034-4885/75/7/076502

4. Yang J. J., Strukov D. B., Stewart D. R. Memristive devices for computing. Nature Nanotech., 2013, vol. 8, pp. 13—24. DOI: 10.1038/nnano.2012.240

5. Petrov A., Alekseeva L., Ivanov A., Luchinin V., Romanov A., Chikyow T., Nabatame T. On the way to a neuromorphic memristor computer platform. Nanoindustry. 2016, no. 1, pp. 94—109. DOI: 10.22184/1993-8578.2016.63.1.94.109

6. Pershin Yu. V., Ventra M. D. Memory effects in complex materials and nanoscale systems. Adv. Phys., 2011, vol. 60, pp. 145—227. DOI: 10.1080/00018732.2010.544961

7. Tulina N. A., Sirotkin V. V. Electron instability in doped-manganites-based heterojunctions. Physica C: Superconductivity, 2004, vol. 400, no. 3–4, pp. 105—110. DOI: 10.1016/j.physc.2003.07.002

8. Tulina N. A., Borisenko I. Yu., Sirotkin V. V. Reproducible resistive switching effect for memory applications in heterocontacts based on strongly correlated electron systems. Phys. Lett. A, 2008, vol. 372, no. 44, pp. 6681—6686. DOI: 10.1016/j.physleta.2008.09.015

9. Tulina N. A., Borisenko I. Yu., Sirotkin V. V. Bipolar resistive switchings in Bi2Sr2CaCu2O8+δ. Solid State Communications, 2013, vol. 170, pp. 48—52. DOI: 10.1016/j.ssc.2013.07.023

10. Tulina N. А., Rossolenko А. N., Shmytko I. М., Кolesnikov N. N., Borisenko D. N., Bozhko S. I., Ionov А. М. Rectification and resistive switching in mesoscopic heterostructures based on Bi2Se3. Materials Letters, 2015, vol. 158, pp. 403—405. DOI: 10.1016/j.matlet.2015.06.060

11. Tulina N. A., Rossolenko A. N., Ivanov А. А., Sirotkin V. V., Shmytko I. M., Borisenko I. Yu., Ionov А. М. Nd2-xCexCuO4-y/Nd2-xCexOy boundary and resistive switchings in mesoscopic structures on base of epitaxial Nd1.86Ce0.14CuO4-у films. Physica C: Superconductivity and its Applications, 2016, vol. 527, pp. 41—45. DOI: 10.1016/j.physc.2016.05.015

12. Sirotkin V. V., Tulina N. A., Rossolenko A. N., Borisenko I. Yu. Numerical simulation of resistive switching in heterostructures based on anisotropic oxide compounds. Bull. Russ. Acad. Sci. Phys., 2016, vol. 80, no. 5, pp. 497—499. DOI: 10.3103/S1062873816050191

13. Tulina N. A., Rossolenko A. N., Shmytko I. M., Kolesnikov N. N., Borisenko D. N., Sirotkin V. V., Borisenko I. Y. Frequency properties of heterostructures based on bismuth selenide upon bipolar resistive switching: Experiments and numerical simulation. Bull. Russ. Acad. Sci. Phys., 2016, vol. 80, no. 6, pp. 672—674. DOI: 10.3103/S1062873816060381

14. Tulina N. A. Memristor properties of high temperature superconductors. URL: https://arxiv.org/abs/1801.09428

15. Tulina N. A., Rossolenko A. N., Shmytko I. M., Ivanov А. А., Sirotkin V. V., Borisenko I. Yu., Tulin V. A. Properties of percolation channels in planar memristive structures based on epitaxial films of a YBa2Cu3O7-δ high temperature superconductor. Supercond. Sci. Technol., 2018, vol. 32, no. 1, art. no. 015003. DOI: 10.1088/1361-6668/aae966

16. Tulina N. A., Rossolenko A. N., Shmytko I. M., Kolesnikov N. N., Borisenko D. N., Sirotkin V. V., Borisenko I. Y., Tulin V. A. Studying the dynamic effects in memristive structures based on bismuth selenide: does a memristor need a shuttle tail? Bull. Russ. Acad. Sci. Phys., 2019, vol. 83, no. 6, pp. 740—744. DOI: 10.3103/S1062873819060340

17. Tulina V. A., Rossolenko A. N., Shmytko I. M., Ivanov A. A., Ionov A. M., Bozhko S. I., Borisenko I. Yu., Sirotkin V. V., Tulin V. A. Functional properties of anisotropic perovskite compounds in memristor structures for application in electronics. Nanoindustry, 2019, no. S, pp. 237—240. URL: http://www.nanoindustry.su/files/article_pdf/7/article_7591_5.pdf

18. Marchuk G. I. Metody vychislitel’noi matematiki [Methods of Computational Mathematics]. Moscow: Nauka, 1977, 456 p. (In Russ.)

19. Trottenberg U., Oosterlee C. W., Schüller A. Multigrid. London: Acad. Press, 2001. 631 p.

20. Sirotkin V. V. Highly efficient decomposition algorithm for modeling thermal modes of powerful transistors. Fundamental’nye problemy radioelektronnogo priborostroeniya, 2016, vol. 16, no. 3, pp. 181—183. (In Russ.)


Review

For citations:


Sirotkin V.V., Tulina N.A. Application of numerical simulation in investigation of memristor structures based on oxides and chalcogenides. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019;22(4):246-252. (In Russ.) https://doi.org/10.17073/1609-3577-2019-4-246-252

Views: 844


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)